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Note 

The Accuracy and the Preservation Property 

of the Discrete Mechanics 

1. INTRODUCTION 

LaBudde and Greenspan [ 11 proposed a scheme for numerical solution of classical 
equations of motion. They termed it “discrete mechanics,” generalizing the previous 
schemes adopted by Greenspan [2-61. Its unique property is its preservation of the 
total energy and the linear and angular momenta just as is required of real solutions. 
However, their scheme has local accuracy of third order, i.e., it involves errors of 
order (dt)3 at each incremental step, At being the time interval. Although they noted 
that higher-order schemes were desired, it is impossible to improve the accuracy 
within their framework. Here, we point out that there exists a scheme of higher-order 
accuracy which also exhibits the desired preservation property. At the same time, we 
discuss some of the limitations inherent to those types. 

2. COMPUTATIONAL SCHEME FOR A TRAJECTORY 

The equation we consider here is Newton’s equation of motion for a particle 

mi: = f, (2.1) 

where r = r(t) is the position of the particle at time t, m the mass of the particle, i: = 
d*r/dt’ the acceleration and f the force acting on it. In this paper, we assume a 
potential 4(r), which determines the force f by 

f = -grad $(r). (2.2) 

We fix an origin in the space for the sake of simplicity. Generalization to the case 
where many particles are interacting with a potential, say, depending on the distance 
between each two particle pair, is easy. Equations (2.1) and (2.2) are viewed as 
giving the acceleration i; at each moment, given the position of the particle at that 
moment. 

Following LaBudde and Greenspan, we try to predict the values at the next step by 

Tit1 = Ari + Bvi At + ai;i(At)2, 

vi+ l At = Cri + Dvi At + bii(At)2, 
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where ri, vi and fi are the position, the velocity and the acceleration of the particle, 
respectively, at time t, At = ti+ 1 - ti being a fixed time interval, and A, B, C, D, a and 
b fixed constants. In view of the Taylor expansion 

r(t + At) = r(r) + i(t) At + i;(t)(At)‘/2! + i(t)(At)*/3! + ..a, 

v(t + At) = v(t) + G(t) At + i;(t)(At)‘/2! + . . . , 

it seems that we must necessarily put 

(2.5) 

(2.6) 

A = 1, B= 1, a = l/2, 

c = 0, D= 1, b= 1, 
(2.7) 

if we wish to attain the highest order of accuracy, because v = i and ir = ?. This is the 
scheme LaBudde and Greenspan used. 

Seemingly, there is no alternative, and the best we can attain is the local truncation 
error of order (At)’ for the position and (At)* for the velocity. However, if we regard 
Eqs. (2.3) and (2.4) as a mere scheme to compute r alone, we do not have to think of 
v as the velocity. It is just an auxiliary variable. This policy is a very practical one, 
because our interest about the motion of a particle is in most cases its exact 
trajectory, i.e., its position at a given time. In order to distinguish the auxiliary 
variable from the velocity, wirte zi instead of vi. First eliminate the auxiliary variable 
zi At from Eqs. (2.3) and (2.4) ( rea v, as zi). From Eq. (2.3) we have d 

zi At = (ri+, - Ari - afi(At)*)/B. (2.8) 

Substitution of this in Eq. (2.4) yields 

'it2 - (A + D) ri+, + (AD - BC) ri 

= Si+ ,(At)* + (bB - aD) i’,(At)*. (2.9) 

Next, we try to determine A, B, C, D, a and b so that Eq. (2.9) holds up to the 
highest possible order of accuracy. It turns out that we can match the terms of up to 
order (At)3 but not those of (AL)~ and that the necessary and sufficient condition for 
that is 

A+D=2, AD-BC= 1, 

a= 1, b = D/B. 
(2.10) 

If we put A = 1 and B = 1 in particular, we get C = 0, D = 1 and a = b = 1 and 
hence 

ri+l = ri + zi At + ii(A (2.11) 

zi+ l At = zi At + i;,(At)‘, (2.12) 

up to order (At)4. This coincides with the so-called “summed form of the explicit 
central difference method,” and the auxiliary variable zi turns out to be the central 
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difference approximation of v(ti + dt/2) [7]. H ence, the initial value zi is given by 
v(0) + i(O)dr/2. The only difference from (2.7) is that a = 1 instead of i. Yet, as we 
have shown, this modification increases the order of accuracy for the position. 

What we have discussed above is the “local truncation error.” The “global 
accuracy ” is O((dt)‘). This is readily seen if we note that the coefficient matrix 

A= A B [ 1 C D 
(2.13) 

is similar to a 2 X 2 Jordan cell of eigenvalue 1, for its trace is 2 and its determinant 
is 1 according to Eqs. (2.10), yet B # 0. This means that A” grows “linearly,” not 
exponentially, in n as n -+ co, no matter how we choose A, B, C and D as long as 
they satisfy Eqs. (2.10). Hence, CyzO O((dt)4) A’ is O((dt)‘). It is also easy to check 
that any scheme satisfying Eqs. (2.10) can be rewritten is the form of Eqs. (2.1 1) and 
(2.12) by an appropriate change of variables. Equations (2.11) and (2.12) are also 
written as 

ritl = ri + zi+ 1 At, (2.14) 

zi+ 1 At = zi At + i;,(Ar)‘. (2.15) 

3. KINETIC ENERGY, WORK AND POTENTIAL 

As was stated in the previous section, we do not lose generality if we consider Eqs. 
(2.11) and (2.12). Note that elimination of ii( from Eqs. (2.11) and (2.12) gives 

zi At = ri - ri-, . (3.1) 

Now, we turn to the preservation property, following LaBudde and Greenspan [ 11. 
We first consider the “kinetic energy” 

Ki = mzf/2, (3.2) 

which is a discrete approximation of the kinetic energy at t = ti + At/2. From 
Eqs. (2.15) and (3.1), we have 

Kit, -Ki=m(z;+, -z;)/2 

= m(zi+ 1 + zi) ’ (zi+ 1 - zi)/2 

= m(r,+ , - ri- 1) . ii/2 

=fi. Ari, 

where we have defined the “mean increment” by 

(3.3) 

(3.4) Ari= (ritl -‘i-,)/2. 
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(In this section, we are considering a part of a computed solution of Eqs. (2.11) and 
(2.12), assuming that the subscripts are in a defined range.) The “work” WY=,, done 
from t = t, to t = t, is defined as follows: 

K,-K,= WY=,, (3.5) 
n- I 

WY=,= 2: fi. Ar,. (3.6) 
i=m 

Next, we say that a force fi is “conservative ” if there exists a scalar function @ 
such that 

fj’ (fi+l -ri-I > = -l@(‘i+ 1) - @(‘i- 1>1* (3.7) 

We call the function @(ri) the “potential” for the force fi. Then, 

n-1 
WY=, = - \‘ l@(ri+ 1) - @(ri- ,)I/2 

i=m 

=- Icq-(i;,], (3.8) 

where we have put 

‘i = [ @(ri) + @(rip ,) l/2. (3.9) 

Hence, from Eqs. (3.5) and (3.8), we observe the “conservation law of total energy,” 
though its form is slightly different from that of LaBudde and Greenspan, as follows: 

K,-Km=-[@,,-&,,,I or Ki + si = const. (3.10) 

As was pointed out by LaBudde and Greenspan, this kind of preservation property 
is desirable, for we can test the correctness of the computation by checking it and it 
prevents some type of divergence of the solution. We should note, however, that this 
preservation is assured only when the scheme for values at time ti+, involves the 
“future” force at time ti+, . This is also true of the scheme of LaBudde and 
Greenspan. In any case, the prediction of values at time ti+ i must be performed by 
explicitly solving it or by iterative correction of a temporary solution. This is obvious, 
because this process forces the preservation to be held at the next step. However, 
besides exceptional cases, it is often difficult to find an appropriate “potential” @. If 
we make an approximation Q(r) = #(r) (cf. Eqs. (3.7) and (2.2)), then we are 
introducing another type of error, which brings into expression (2.11) errors of 
O((dt)3). This fact also applies to the scheme of LaBudde and Greenspan, though 
they did not comment on it. This is one of the major limitations inherent to all 
formulations of this type. 

On the oter hand, the conservation of angular momentum is straightforward. This 
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is because it is not so much a physical property as a geometrical one. Define the 
“angular momentum” Li by 

Li = mri x zi. (3.11) 

Then, 

Li+, = m[r, + zi Ar + fi(At)2/m] x [zi + fi At/m] 

=Li+Nidt, (3.12) 

where 

Ni = ri x fi (3.13) 

is the “torque.” (In the formula of LaBudde and Greenspan, ri is replaced by 

Cri+ 1 + ri)/2*) Th is result does not depend on what kind of force fi is used. In 
particular, if the force is “central,” i.e., 

ri X fi = 0, 

then the “angular momentum” (or the “area1 velocity”) is conserved: 

Li = const. 

EXAMPLE 1 (LINEAR OSCILLATION). Consider a quadratic “potential” 

@(ri) = kry/2. 

Then 

-[~(ri+,)-~(ri~,)J=-k(rf+,-rf~,)/2 

= -k(r,+, + rip ,) . (pi+, - rip ,)/2. 

Thus, we can see that the “linear” force 

fi = -kF, 

has this “potential,” where 

Fj = (rj+ 1 + rj- ,)/2 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

is the “mean displacement.” The scheme is rearranged into the following explicit 
form: 

ritl = [ri - kr-,(At)2/2m + zi All/[ 1 + k(At)2/2m], (3.20) 

'itI = [zi - k(r, + rip ,)At/h]/[ 1 + k(At)‘/2m J. (3.21) 
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Then, we always have 
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mzf/2 + k(r,’ + rf- ,)/4 = const. 

EXAMPLE 2 (INVERSE SQUARE LAW). If we put 

@(rJ = -k/II ri It3 (3.23) 

(3.22) 

I/ 11 denoting the Euclidean norm (or L* norm), we have 

-[@Cri+ 1) - @(ri-111 

=k(llllri+~ll - l/llri-,ll) 

~~k~llri+~ll~llri~~lO/llri+~ll llri- III 
2 2 

= 
-k /Iti+ 1 II llri~:l;lr::Yli + llri- 1 II> 

LIZ-- ’ Cri+l -riL1). (3.24) 

Thus, we can see that the force of the “inverse square law” 

fi = -kii,/J; (3.25) 

has this “potential,” where 

ri = JIIri+ II/ llri- 1 II) 

fii= hi, +ri~~>/(llri+~ll + Ilri-,111 

(3.26) 

(3.27) 

are the “mean distance” and the “mean direction,” respectively. Then, we always 
have 

mz:/2 - k(l/llrJ + l/llrip, /I)/4 = const. (3.28) 

4. CONCLUSION 

Within the framework of Eqs. (2.3) and (2.4), the fourth-order local accuracy for 
the position is the highest attainable. Of course, there are many higher accuracy 
numerical schemes for differential equations available [S-9], but then we can no 
longer obtain simple laws of preservation. 

On the other hand, the scheme presented here is by no means always the best 
recommendable one for practical use. In fact, the choice of a suitable one is a difficult 
problem, largely depending on the physical properties of the problem under 
consideration. Our purpose here is to point out that the idea of LaBudde and 
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Greenspan, i.e., the conservation properties, can actually be extended to a scheme 
with higher accuracy. That possibility has been exhausted here, and we have also 
shown its limitations. 
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